Vorstellung von Bachelor- und Masterthemen Sommersemester 2020

Computer Graphics and Knowledge Visualization

Head of institute Deputy head Deputy head

n / 2

Prof. Dr. Tobias Schreck Prof. Dr. Dieter W. Fellner Ass.Prof. Dr. Ursula Augsdörfer

Fraunhofer Visual Computing

Head of institute Senior Researchers Dr. Eva Eggeling Dr. Ulrich Krispel, Dr. Christoph Schinko, Dr. Volker Settgast, Dr. Torsten Ullrich

Outline

Welcome

- Overview of thesis workflow
- Institute presentation & topics CGV
- Institute presentation & topics
 Fraunhofer Austria

What is a Thesis?

- Demonstrate that you can work on a larger CSrelated problem
 - Tackle a relevant, current problem
 - Systematic work approach
 - Typically, involves a theoretical and a practical paer
 - Present solution
 - Documentation in form of a written thesis
 - Presentation (and defense) of the results
- Duration
 - Bachelor: 6th semester
 - Master: 4th semester
 - ECTS depending on course of study

Thesis Phases

- 1. Find a topic and advisor of interest
 - Thesis presentations \rightarrow follow-up with contact
 - Agree on topic and supervision modalities
- 2. Initial research & workplan
 - Read related work
 - Review data and algorithms provided (in case)
 - Derive work plan with milestones and measurable outcomes
- 3. Main thesis work
 - Implementation / design
 - Evaluation
 - Documentation, thesis writing
- 4. Finalization stage
 - Complete the work
 - Complete the thesis
 - Agree on closing presentation or examination date
- 5. Follow-up scientific publication (if applicable)

Goals for Today

- Introduction of offered topics
 - Presented by advisors at CGV and Fraunhofer
- → First impression of topics
- Possibility to ask questions and meet later with advisor
- Get to know contact details, to follow up in case you want to work on any of the topics

3D Modelling and ProcessingComputer Aided Geometric DesignProcedural ModellingPhysics-based Modelling3D Object Retrieval3D Restoration

Simulation and Analysis Analysis and Visualization of Geometric Information Isogeometric Analysis

Virtual Reality

Visual Analytics and Digital Libraries

Visual-Interactive Data Exploration Search Interfaces and Semantic Annotation Submission and Review System

Outline

- Welcome
- Overview of thesis workflow
- Institute presentation & topics CGV
- Institute presentation & topics
 Fraunhofer Austria

Topics by CGV: Advisors and Areas

- Reinhold Preiner
 - 3D Geometry Processing & Interactive Visualization
- Ursula Augsdörfer & Andreas Riffnaller-Schiefer
 - Augmented & Virtual Reality, CAD & Simulation
- Simon Kloiber
 - Immersive Analytics & Virtual Reality
- Lin Shao
 - Visual Analytics & Data Visualization
- Tobias Schreck
 - 3D Object Retrieval and Visual Analytics
- Stefan Lengauer
 - 3D Object Retrieval for Cultural Heritage Applications

Advisor: Areas:

Dr. Reinhold Preiner

3D Geometry Processing Interactive Visualization

Contact:

r.preiner@cgv.tugraz.at

Nonlinear Volumetric Subdivision

Volumetric subdivision of models into small cells. Used in in analysis and simulation.

Your tasks

- Extend an existing volumetric framework by a nonlinear subdivision method.
- Experimental investigation of subdivision patterns.

Contact: r.preiner@cgv.tugraz.at

Interactive Visual Analysis Tool

Parallel Coordinates

Scatter Plots

Sketching/ Model Regression

Explorative data analysis enabled by interactive dimensional reduction.

Your task

- Realize an interactive data analysis framework featuring
 - Combined 1D/2D/3D parallel coordinates
 - 2D/3D scatter plots
 - interactive sub-space sketching

Image-based Flattening Transfer

Image-based transfer flattening mask between objects of similar type.

Your task

- View-based pose estimation of prior models to a given image
- Interactive selection of surface regions
- Mapping of selected region mask to precomputed parametrization.
 Implementation in an existing software framework.

Ма

Advisors: Ass.Prof. Ursula Augsdörfer Dr. Andreas Riffnaller-Schiefer

Area: Augmented & Virtual Reality CAD & Simulation

Contact: <u>u.augsdorfer@cgv.tugraz.at</u> <u>a.schiefer@cgv.tugraz.at</u>

Topic: AR Object Identification

- Identify objects like e.g. LEGO parts in augmented reality
 - Extract information from AR scene
 - Search database of known objects
- Visualize information for identified part, e.g.
 - Corresponding LEGO set
 - Assembly info
 - ...

Topic: Exact derivatives for Catmull-Clark

- Near extraordinary vertices (EVs), evaluated derivatives diverge
- The characteristic map is used for analysis of the surface near EVs
- Implement algorithms using the characteristic map to evaluate derivatives near EVs:
 - Ioana Boier-Martin and Denis Zorin: Differentiable parameterization of Catmull-Clark subdivision surfaces.
 - Anna Wawrzinek, and Konrad Polthier: Integration of generalized B-spline functions on Catmull–Clark surfaces at singularities.
- Use these derivatives as training data for a machine learning system *learning* Catmull-Clark derivatives

Topic: Modelling surfaces in VR

- Quickly design smooth freeform (subdivision) surfaces in VR
- Possible approach: sketching feature lines

Changjian Li, Hao Pan, Yang Liu, Xin Tong, Alla Sheffer, and Wenping Wang: Robust Flow-Guided Neural Prediction for Sketch-Based FreeformSurface Modeling.

or

- Interface for precise CAD modelling in VR
- Explore typical CAD modelling tools in VR

Advisor: Area:

Dipl.-Ing. **Simon Kloiber** *Immersive Analytics Virtual Reality*

Contact: <u>s.kloiber@cgv.tugraz.at</u>

Topic: Immersive Pump Storage Education

Project Definition

- Create educational web application in 3D / VR to present a hot water pump storage system
 - Create CAD model
 - Find engaging interactions
 - Animate important processes
 - Visualize energy sources and carriers

cut of a possible layo

In conjunction with Franz Georg Pikl of the Insitute of Hydraulic Engineering and Water Resources Management

Contact s.kloiber@cgv.tugraz.at

Advisor: Lin Shao, M.Sc. Area: Visual Analytics Data Visualization

Contact: <u>I.shao@cgv.tugraz.at</u>

Evaluation in Visual Analytics

Comparison of different state-of-the-art visual analytics techniques

Your Task

- Develop a visual analytics system for high-dimensional data
- Compare your developed technique with existing CGV systems
- Conduct a user study
 - Analyze user behavior during retrieval tasks
 - Discover pros/cons of one technique over another

Eye-Tracking based Recommendations for High-Dimensional Analysis

Your Task

- Develop a visual analytics system including eye-tracking
- Analyze user behavior during retrieval tasks
- Identify area of interest (AOI) of users
- Compute similarity feature for local patterns in time series
- Create recommendations for analysis/exploration

Advisor:Prof. Dr. Tobias SchreckArea:3D Object RetrievalData Visualization

Contact: <u>t.schreck@cgv.tugraz.at</u>

Topic: Comparison of Buildings by their 3D Structures

Project Definition

- We have a database of 3D building models and room connectivity graphs
- Implement a graph-based similarity function to compare room connectivity
- Implement a method to visualize room connectivity structures and to compare them
- Use cluster analysis to automatically derive and evaluate structure taxonomy

Contact: tobias.schreck@cgv.tugraz.at

Topic: Learning Interestingness From User Interaction

Project Definition

- Implement a basic visual exploration system
- Implement a logging of user operations during exploration
 - E.g., where and how long a user zooms in
- Train a model of interestingness from log data
 - E.g., using decision trees

Contact: tobias.schreck@cgv.tugraz.at

Topic: Visualization of 3D Repositories

Project Definition

- Implement a descriptor for 3D objects
- Implement a visual cluster analysis approach to group and visualize large numbers of objects
- Define appropriate user interaction for navigation
- Apply on real 3D data, e.g., from Mechanical Engineering

Contact: tobias.schreck@cgv.tugraz.at

Advisor:M.Sc. Stefan LengauerArea:3D Object RetrievalCultural Heritage Applications

Contact: <u>s.lengauer@cgv.tugraz.at</u>

Topic: Object Detection and Semantic Segmentation of Tourist Pictures

Project Definition

- Survey state of the art semantic segmentation and pose estimation methods
- Implement one ore two approaches
- Evaluate the applicability for tourist pictures depicting cultural heritage objects

N. Hyeonwoo et al., 2015.

Topic: Sketch-Interface for Similarity Retrieval

Project Definition

- Investigate state of the art methods for sketchcompletion (i.e. Shadowdraw)
- Conceptualize and implement a suitable user interface
- Evaluate applicability and benefits for similarity retrieval

L. Yong Jae et al., 2011.

Slides available online:

https://www.tugraz.at/institute/cgv/teaching/bachelormaster-topics/

Please contact advisors for more information

Thank you and best of success!

